If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-13m+12=0
a = 1; b = -13; c = +12;
Δ = b2-4ac
Δ = -132-4·1·12
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-11}{2*1}=\frac{2}{2} =1 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+11}{2*1}=\frac{24}{2} =12 $
| 4-12x=4(1-3x) | | 2x(3/4)=4 | | 4(x+2)/5=7+5x/13 | | x(x^2-3x+3)-1=0 | | 6z+9=-2 | | 7/5b=21 | | 100+64+d=168 | | 100-c=75 | | 2.5(2k+1)-6.5=10 | | 2.5(2k+1)-6.5=1. | | 10-s-s=8 | | 12-w=6 | | 9−6x=−1 | | R+r+3=7 | | (3+5x)/5=(4-x)/7 | | 3x+23=0 | | 90-x=1/3 | | x^2+12x-1436=0 | | 1/5(x-11)-2x(1/3-1/5)=3/4x-2-X-1/60x | | 1÷3(2x-1)-1÷4(2x+1)=1÷12(2-x) | | M/4+m/5=2 | | 13x+12=6x+117 | | 57-3x=6x+22 | | 7w+10-10=38-10 | | 10(w+4)=90 | | 3+-2x=13+3x | | 9x-7=2.7 | | 10=3x/9 | | (8-2+1)x=-3 | | t+1=8t+8 | | 5x+4x-2x=42 | | 21-6t=41-t |